DocumentCode :
2703086
Title :
Improving the Non-dominate Sorting Genetic Algorithm for Multi-objective Optimization
Author :
Ghomsheh, V. Seydi ; Khanehsar, M. Ahmadieh ; Teshnehlab, M.
Author_Institution :
Islamic Azad Univ., Kermanshah
fYear :
2007
fDate :
15-19 Dec. 2007
Firstpage :
89
Lastpage :
92
Abstract :
The non-dominate sorting genetic algorithmic-II (NSGA-II) is a relatively recent technique for finding or approximating the Pareto-optimal set for multi-objective optimization problems. In different studies NSGA-II has shown good performance in comparison to other multi-objective evolutionary algorithms (Deb et al., 2002). In this paper an improved version which is named Niching-NSGA-II (n-NSGA-II) is proposed. This algorithm uses new method after non-dominate sorting procedure for keeping diversity. The comparison of n-NSGA-II with NSGA-II and other methods on ZDT test problems yields promising results.
Keywords :
Pareto optimisation; genetic algorithms; sorting; Niching-NSGA-II; Pareto-optimal set; multiobjective optimization; nondominate sorting genetic algorithm; Computational intelligence; Evolutionary computation; Genetic algorithms; Genetic mutations; Sorting; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Security Workshops, 2007. CISW 2007. International Conference on
Conference_Location :
Harbin
Print_ISBN :
978-0-7695-3073-4
Type :
conf
DOI :
10.1109/CISW.2007.4425453
Filename :
4425453
Link To Document :
بازگشت