DocumentCode :
2704630
Title :
Identification of linear parameter-varying systems via LFTs
Author :
Lee, Lawton H. ; Poolla, Kameshwar
Author_Institution :
Dept. of Mech. Eng., California Univ., Berkeley, CA, USA
Volume :
2
fYear :
1996
fDate :
11-13 Dec 1996
Firstpage :
1545
Abstract :
This paper considers the identification of linear parameter-varying (LPV) systems having linear-fractional parameter dependence. We present a natural prediction error method, using gradient- and Hessian-based nonlinear optimization algorithms to minimize the cost function. Computing the gradients and (approximate) Hessians is shown to reduce to simulating LPV systems and computing inner products. Issues relating to initialization and identifiability are discussed. The algorithms are demonstrated on a numerical example
Keywords :
Hessian matrices; minimisation; nonlinear programming; parameter estimation; Hessian-based nonlinear optimization algorithms; LFT; LPV; cost function minimization; gradient-based nonlinear optimization algorithms; identifiability; identification; initialization; linear parameter-varying systems; linear-fractional parameter dependence; prediction error method; 1f noise; Aircraft; Cost function; Linear systems; Mechanical engineering; Missiles; Noise measurement; Noise reduction; Parameter estimation; Time varying systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1996., Proceedings of the 35th IEEE Conference on
Conference_Location :
Kobe
ISSN :
0191-2216
Print_ISBN :
0-7803-3590-2
Type :
conf
DOI :
10.1109/CDC.1996.572742
Filename :
572742
Link To Document :
بازگشت