Title :
Object tracking and multimedia augmented transition network for video indexing and modeling
Author :
Chen, Shu-Ching ; Shyu, Mei-Ling ; Zhang, Chengcui ; Kashyap, R.L.
Author_Institution :
Sch. of Comput. Sci., Florida Inst. Univ., Miami, FL, USA
Abstract :
S.C. Chen et al. (1999) proposed a multimedia augmented transition network (ATN) model, together with its multimedia input strings, to model and structure video data. This multimedia ATN model was based on an ATN model that had been used within the artificial intelligence (AI) arena for natural-language understanding systems, and its inputs were modeled by multimedia input strings. The temporal and spatial relations of semantic objects were captured by an unsupervised video segmentation method called the SPCPE (simultaneous partitioning and class parameter estimation) algorithm, and they were modeled by the multimedia input strings. However, the segmentation method used was not able to identify objects that are overlapped together within video frames. The identification of overlapped objects is a great challenge. For this purpose, a backtrack-chain-update-split algorithm is developed in this paper that identifies the split segment (object) and uses this information in the current frame to update the previous frames in a backtrack-chain manner. The proposed split algorithm provides more accurate temporal and spatial information of the semantic objects for video indexing
Keywords :
backtracking; database indexing; image segmentation; multimedia databases; parameter estimation; tracking; video databases; video signal processing; SPCPE algorithm; artificial intelligence; backtrack-chain-update-split algorithm; class parameter estimation; input modelling; multimedia augmented transition network; multimedia browsing; multimedia database systems; multimedia input strings; object tracking; overlapped objects; segmentation method; semantic objects; simultaneous partitioning; spatial relations; split segment identification; temporal relations; unsupervised video segmentation method; video data modelling; video data structuring; video frame updating; video indexing; Artificial intelligence; Computer networks; Indexing; Information retrieval; Multimedia databases; Multimedia systems; Partitioning algorithms; Streaming media; Video on demand; Videoconference;
Conference_Titel :
Tools with Artificial Intelligence, 2000. ICTAI 2000. Proceedings. 12th IEEE International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7695-0909-6
DOI :
10.1109/TAI.2000.889878