DocumentCode :
2706001
Title :
Multilayer perceptrons and radial basis functions are universal robust approximators
Author :
Lo, James Ting-Ho
Author_Institution :
Dept. of Math. & Stat., Maryland Univ., Baltimore, MD, USA
Volume :
2
fYear :
1998
fDate :
4-9 May 1998
Firstpage :
1311
Abstract :
The standard risk-sensitive (or exponential quadratic) functional used for robust control and filtering for linear systems is generalized. It is then shown that under relatively mild conditions, a function can be approximated, to any desired degree of accuracy with respect to these general risk-sensitive functionals, by a multilayer perceptron or a radial basis function network
Keywords :
feedforward neural nets; function approximation; multilayer perceptrons; exponential quadratic functional; multilayer perceptrons; radial basis functions; risk-sensitive functional; universal robust approximators; Function approximation; MIMO; Mathematics; Multi-layer neural network; Multilayer perceptrons; Neural networks; Neurons; Robust control; Robustness; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on
Conference_Location :
Anchorage, AK
ISSN :
1098-7576
Print_ISBN :
0-7803-4859-1
Type :
conf
DOI :
10.1109/IJCNN.1998.685964
Filename :
685964
Link To Document :
بازگشت