DocumentCode :
2706059
Title :
A local approach of adaptive affinity propagation clustering for large scale data
Author :
Sun, Changyin ; Wang, Chenghong ; Song, Su ; Wang, Yifan
Author_Institution :
Sch. of Autom., Southeast Univ., Nanjing, China
fYear :
2009
fDate :
14-19 June 2009
Firstpage :
2998
Lastpage :
3002
Abstract :
Affinity propagation exhibits fast execution speed and finds clusters with low error rate when clustering sparsely related data but its values of parameters are fixed. This paper proposes a modified method named partition adaptive affinity propagation, which can automatically eliminate oscillations and adjust the values of parameters when rerunning affinity propagation procedure to yield optimal clustering results, with high execution speed and precision. Experiments are carried on UCI datasets and Caltech101 dataset, and ORL faces dataset. The results verify that this adaptive method is effective and feasible.
Keywords :
pattern clustering; unsupervised learning; adaptive affinity propagation clustering; large scale data; partition adaptive affinity propagation; Clustering algorithms; Clustering methods; Damping; Educational institutions; Error analysis; Face detection; Large-scale systems; Neural networks; Partitioning algorithms; Sun;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2009. IJCNN 2009. International Joint Conference on
Conference_Location :
Atlanta, GA
ISSN :
1098-7576
Print_ISBN :
978-1-4244-3548-7
Electronic_ISBN :
1098-7576
Type :
conf
DOI :
10.1109/IJCNN.2009.5178601
Filename :
5178601
Link To Document :
بازگشت