Title :
Graph-Based Iterative Hybrid Feature Selection
Author :
Zhong, ErHeng ; Xie, Sihong ; Fan, Wei ; Ren, Jiangtao ; Peng, Jing ; Zhang, Kun
Author_Institution :
Sun Yat-Sen Univ., Guangzhou
Abstract :
When the number of labeled examples is limited, traditional supervised feature selection techniques often fail due to sample selection bias or unrepresentative sample problem. To solve this, semi-supervised feature selection techniques exploit the statistical information of both labeled and unlabeled examples in the same time. However, the results of semi-supervised feature selection can be at times unsatisfactory, and the culprit is on how to effectively use the unlabeled data. Quite different from both supervised and semi-supervised feature selection, we propose a ldquohybridrdquoframework based on graph models. We first apply supervised methods to select a small set of most critical features from the labeled data. Importantly, these initial features might otherwise be missed when selection is performed on the labeled and unlabeled examples simultaneously. Next,this initial feature set is expanded and corrected with the use of unlabeled data. We formally analyze why the expected performance of the hybrid framework is better than both supervised and semi-supervised feature selection. Experimental results demonstrate that the proposed method outperforms both traditional supervised and state-of-the-art semi-supervised feature selection algorithms by at least 10% inaccuracy on a number of text and biomedical problems with thousands of features to choose from. Software and dataset is available from the authors.
Keywords :
data handling; graph theory; iterative methods; graph-based iterative hybrid feature selection; semisupervised feature selection; supervised feature selection techniques; unlabeled data; Data analysis; Performance analysis; feature selection; graph; high dimension; hybrid; semi-supervised;
Conference_Titel :
Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on
Conference_Location :
Pisa
Print_ISBN :
978-0-7695-3502-9
DOI :
10.1109/ICDM.2008.63