DocumentCode :
2711463
Title :
Intrinsic Cluster Detection Using Adaptive Grids
Author :
Sarmah, S. ; Das, R. ; Bhattacharyya, D.K.
Author_Institution :
Tezpur Univ., Assam
fYear :
2007
fDate :
18-21 Dec. 2007
Firstpage :
371
Lastpage :
376
Abstract :
This paper presents an algorithm GDCT, grid density clustering using triangle-subdivision, capable of identifying arbitrary shaped embedded clusters as well as multi density clusters over large spatial datasets. The experimental results establish the superiority of the technique in terms of cluster quality.
Keywords :
pattern clustering; very large databases; visual databases; adaptive grids; arbitrary shaped embedded clusters; grid density clustering; intrinsic cluster detection; large spatial datasets; multidensity clusters; triangle-subdivision; Clustering algorithms; Degradation; Embedded computing; Grid computing; Multi-stage noise shaping; Multidimensional systems; Nearest neighbor searches; Optical sensors; Partitioning algorithms; Shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computing and Communications, 2007. ADCOM 2007. International Conference on
Conference_Location :
Guwahati, Assam
Print_ISBN :
0-7695-3059-1
Type :
conf
DOI :
10.1109/ADCOM.2007.18
Filename :
4425999
Link To Document :
بازگشت