DocumentCode :
2712494
Title :
Exploiting local and global patch rarities for saliency detection
Author :
Borji, Ali ; Itti, Laurent
fYear :
2012
fDate :
16-21 June 2012
Firstpage :
478
Lastpage :
485
Abstract :
We introduce a saliency model based on two key ideas. The first one is considering local and global image patch rarities as two complementary processes. The second one is based on our observation that for different images, one of the RGB and Lab color spaces outperforms the other in saliency detection. We propose a framework that measures patch rarities in each color space and combines them in a final map. For each color channel, first, the input image is partitioned into non-overlapping patches and then each patch is represented by a vector of coefficients that linearly reconstruct it from a learned dictionary of patches from natural scenes. Next, two measures of saliency (Local and Global) are calculated and fused to indicate saliency of each patch. Local saliency is distinctiveness of a patch from its surrounding patches. Global saliency is the inverse of a patch´s probability of happening over the entire image. The final saliency map is built by normalizing and fusing local and global saliency maps of all channels from both color systems. Extensive evaluation over four benchmark eye-tracking datasets shows the significant advantage of our approach over 10 state-of-the-art saliency models.
Keywords :
image colour analysis; Lab color space; RGB color space; benchmark eye-tracking dataset; global image patch rarity; global patch rarity; global saliency; input image partitioning; local image patch rarity; local patch rarity; local saliency; nonoverlapping patch; patch rarity measurement; saliency detection; Adaptation models; Computational modeling; Dictionaries; Humans; Image color analysis; Vectors; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2012.6247711
Filename :
6247711
Link To Document :
بازگشت