Title :
Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer´s disease
Author :
Wan, Jing ; Zhang, Zhilin ; Yan, Jingwen ; Li, Taiyong ; Rao, Bhaskar D. ; Fang, Shiaofen ; Kim, Sungeun ; Risacher, Shannon L. ; Saykin, Andrew J. ; Shen, Li
Abstract :
Alzheimer´s disease (AD) is the most common form of dementia that causes progressive impairment of memory and other cognitive functions. Multivariate regression models have been studied in AD for revealing relationships between neuroimaging measures and cognitive scores to understand how structural changes in brain can influence cognitive status. Existing regression methods, however, do not explicitly model dependence relation among multiple scores derived from a single cognitive test. It has been found that such dependence can deteriorate the performance of these methods. To overcome this limitation, we propose an efficient sparse Bayesian multi-task learning algorithm, which adaptively learns and exploits the dependence to achieve improved prediction performance. The proposed algorithm is applied to a real world neuroimaging study in AD to predict cognitive performance using MRI scans. The effectiveness of the proposed algorithm is demonstrated by its superior prediction performance over multiple state-of-the-art competing methods and accurate identification of compact sets of cognition-relevant imaging biomarkers that are consistent with prior knowledge.
Keywords :
Bayes methods; biomedical MRI; brain; cognition; diseases; learning (artificial intelligence); medical image processing; neurophysiology; regression analysis; Alzheimer disease; MRI scans; brain; cognition-relevant imaging biomarker; cognitive function; cognitive outcome; cognitive status; dementia; multivariate regression model; neuroimaging measures; progressive memory impairment; sparse Bayesian multitask learning; Algorithm design and analysis; Bayesian methods; Correlation; Kernel; Magnetic resonance imaging; Neuroimaging; Prediction algorithms;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2012.6247769