DocumentCode :
2713787
Title :
Automatic mitral leaflet tracking in echocardiography by outlier detection in the low-rank representation
Author :
Zhou, Xiaowei ; Yang, Can ; Yu, Weichuan
Author_Institution :
Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China
fYear :
2012
fDate :
16-21 June 2012
Firstpage :
972
Lastpage :
979
Abstract :
Tracking the mitral valve leaflet in an ultrasound sequence is a challenging task because of the poor image quality and fast and irregular leaflet motion. Previous algorithms usually applied standard segmentation methods based on edges, object intensity and anatomical information to segment the mitral leaflet in static frames. However, they are limited in practical applications due to the requirement of manual input for initialization or large annotated datasets for training. In this paper we present a completely automatic and unsupervised algorithm for mitral leaflet detection and tracking. We demonstrate that the image sequence of a cardiac cycle can be well approximated with a low-rank matrix, except for the mitral leaflet region with fast motion and tissue deformation. Based on this difference, we propose to track the mitral leaflet by detecting contiguous outliers in the low-rank representation. With this formulation, the leaflet is tracked using the motion cue, but the complicated motion computation is avoided. To the best of our knowledge, the proposed algorithm is the first unsupervised method for mitral leaflet tracking. The algorithm was tested on both 2D and 3D echocardiography, which achieved accurate segmentation with an average distance of 0.87 ± 0.42mm compared to the manual tracing.
Keywords :
echocardiography; edge detection; image motion analysis; image representation; image segmentation; image sequences; matrix algebra; medical image processing; anatomical information; automatic mitral leaflet tracking; echocardiography; edges; image quality; image segmentation; low-rank matrix; low-rank representation; mitral valve leaflet; motion computation; object intensity; outlier detection; segmentation methods; ultrasound sequence; Image edge detection; Image segmentation; Motion segmentation; Myocardium; Tracking; Ultrasonic imaging; Valves;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2012.6247773
Filename :
6247773
Link To Document :
بازگشت