DocumentCode :
2714395
Title :
Quantum-inspired feature and parameter optimisation of evolving spiking neural networks with a case study from ecological modeling
Author :
Schliebs, Stefan ; Platel, Michaël Defoin ; Worner, Sue ; Kasabov, Nikola
Author_Institution :
Knowledge Eng. & Discovery Res. Inst. (KEDRI), Auckland Univ. of Technol., Auckland, New Zealand
fYear :
2009
fDate :
14-19 June 2009
Firstpage :
2833
Lastpage :
2840
Abstract :
The paper introduces a framework and implementation of an integrated connectionist system, where the features and the parameters of an evolving spiking neural network are optimised together using a quantum representation of the features and a quantum inspired evolutionary algorithm for optimisation. The proposed model is applied on ecological data modeling problem demonstrating a significantly better classification accuracy than traditional neural network approaches and a more appropriate feature subset selected from a larger initial number of features. Results are compared to a naive Bayesian classifier.
Keywords :
ecology; evolutionary computation; neural nets; optimisation; ecological data modeling problem; ecological modeling; evolving spiking neural networks; integrated connectionist system; naive Bayesian classifier; parameter optimisation; quantum inspired evolutionary algorithm; quantum representation; quantum-inspired feature optimisation; Biological system modeling; Neural networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2009. IJCNN 2009. International Joint Conference on
Conference_Location :
Atlanta, GA
ISSN :
1098-7576
Print_ISBN :
978-1-4244-3548-7
Electronic_ISBN :
1098-7576
Type :
conf
DOI :
10.1109/IJCNN.2009.5179049
Filename :
5179049
Link To Document :
بازگشت