DocumentCode :
2715622
Title :
Dense Lagrangian motion estimation with occlusions
Author :
Ricco, Susanna ; Tomasi, Carlo
Author_Institution :
Duke Univ., Durham, NC, USA
fYear :
2012
fDate :
16-21 June 2012
Firstpage :
1800
Lastpage :
1807
Abstract :
We couple occlusion modeling and multi-frame motion estimation to compute dense, temporally extended point trajectories in video with significant occlusions. Our approach combines robust spatial regularization with spatially and temporally global occlusion labeling in a variational, Lagrangian framework with subspace constraints. We track points even through ephemeral occlusions. Experiments demonstrate accuracy superior to the state of the art while tracking more points through more frames.
Keywords :
computer graphics; hidden feature removal; motion estimation; dense Lagrangian motion estimation; global occlusion labeling; multi-frame motion estimation; occlusion modeling; Accuracy; Brightness; Equations; Motion estimation; Robustness; Tracking; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2012.6247877
Filename :
6247877
Link To Document :
بازگشت