DocumentCode :
2715753
Title :
Faster parameter estimation using risk-sensitive filters
Author :
Athuraliya, Sanjeewa ; Ford, Jason ; Moore, John
Author_Institution :
Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
Volume :
3
fYear :
1998
fDate :
1998
Firstpage :
3411
Abstract :
In this paper, we propose a risk-sensitive approach to parameter estimation for hidden Markov models (HMM). The parameter estimation approach considered exploits estimation of various functions of the state, based on model estimates. We propose certain practical suboptimal risk-sensitive filters to estimate the various functions of the state during transients, rather than optimal risk-neutral filters as in earlier studies. The estimates are asymptotically optimal, if asymptotically risk neutral, and can give significantly improved transient performance, which is a very desirable objective for certain engineering applications. To demonstrate the improvement in estimation simulation studies are presented that compare parameter estimation based on risk-sensitive filters with estimation based on risk-neutral filters
Keywords :
computational complexity; filtering theory; hidden Markov models; optimisation; parameter estimation; HMM; asymptotically optimal estimates; asymptotically risk neutral estimates; hidden Markov models; optimal risk-neutral filters; parameter estimation; risk-sensitive filters; suboptimal risk-sensitive filters; transient performance; transients; Biomedical signal processing; Digital filters; Digital signal processing; Filtration; Hidden Markov models; Parameter estimation; Power engineering and energy; State estimation; Systems engineering and theory; Weapons;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
Conference_Location :
Tampa, FL
ISSN :
0191-2216
Print_ISBN :
0-7803-4394-8
Type :
conf
DOI :
10.1109/CDC.1998.758231
Filename :
758231
Link To Document :
بازگشت