Title :
Discrete-continuous optimization for multi-target tracking
Author :
Andriyenko, Anton ; Schindler, Konrad ; Roth, Stefan
Abstract :
The problem of multi-target tracking is comprised of two distinct, but tightly coupled challenges: (i) the naturally discrete problem of data association, i.e. assigning image observations to the appropriate target; (ii) the naturally continuous problem of trajectory estimation, i.e. recovering the trajectories of all targets. To go beyond simple greedy solutions for data association, recent approaches often perform multi-target tracking using discrete optimization. This has the disadvantage that trajectories need to be pre-computed or represented discretely, thus limiting accuracy. In this paper we instead formulate multi-target tracking as a discrete-continuous optimization problem that handles each aspect in its natural domain and allows leveraging powerful methods for multi-model fitting. Data association is performed using discrete optimization with label costs, yielding near optimality. Trajectory estimation is posed as a continuous fitting problem with a simple closed-form solution, which is used in turn to update the label costs. We demonstrate the accuracy and robustness of our approach with state-of-the-art performance on several standard datasets.
Keywords :
optimisation; sensor fusion; target tracking; continuous fitting problem; data association; discrete optimization; discrete problem; discrete-continuous optimization; image observations; label costs; multimodel fitting; multitarget tracking; simple closed-form solution; trajectory estimation; Estimation; Labeling; Optimization; Splines (mathematics); Target tracking; Trajectory;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2012.6247893