DocumentCode :
2716984
Title :
Discriminately decreasing discriminability with learned image filters
Author :
Whitehill, Jacob ; Movellan, Javier
Author_Institution :
Machine Perception Lab., Univ. of California, San Diego, CA, USA
fYear :
2012
fDate :
16-21 June 2012
Firstpage :
2488
Lastpage :
2495
Abstract :
In machine learning and computer vision, input signals are often filtered to increase data discriminability. For example, preprocessing face images with Gabor band-pass filters is known to improve performance in expression recognition tasks [1]. Sometimes, however, one may wish to purposely decrease discriminability of one classification task (a “distractor” task), while simultaneously preserving information relevant to another task (the target task): For example, due to privacy concerns, it may be important to mask the identity of persons contained in face images before submitting them to a crowdsourcing site (e.g., Mechanical Turk) when labeling them for certain facial attributes. Suppressing discriminability in distractor tasks may also be needed to improve inter-dataset generalization: training datasets may sometimes contain spurious correlations between a target attribute (e.g., facial expression) and a distractor attribute (e.g., gender). We might improve generalization to new datasets by suppressing the signal related to the distractor task in the training dataset. This can be seen as a special form of supervised regularization. In this paper we present an approach to automatically learning preprocessing filters that suppress discriminability in distractor tasks while preserving it in target tasks. We present promising results in simulated image classification problems and in a realistic expression recognition problem.
Keywords :
Gabor filters; band-pass filters; computer vision; data privacy; face recognition; image classification; learning (artificial intelligence); Gabor bandpass filters; computer vision; crowdsourcing site; discriminability suppression; distractor task; facial attributes; facial expression; gender; input signals; inter-dataset generalization; learned image filters; machine learning; mechanical turk; preprocessing face images; privacy concerns; realistic expression recognition problem; simulated image classification problems; supervised regularization; target task; training dataset; Convolution; Face; Kernel; Labeling; Measurement; Training; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2012.6247964
Filename :
6247964
Link To Document :
بازگشت