Title :
Learning ordinal discriminative features for age estimation
Author :
Li, Changsheng ; Liu, Qingshan ; Liu, Jing ; Lu, Hanqing
Author_Institution :
Inst. of Autom., NLPR, Beijing, China
Abstract :
In this paper, we present a new method for facial age estimation based on ordinal discriminative feature learning. Considering the temporally ordinal and continuous characteristic of aging process, the proposed method not only aims at preserving the local manifold structure of facial images, but also it wants to keep the ordinal information among aging faces. Moreover, we try to remove redundant information from both the locality information and ordinal information as much as possible by minimizing nonlinear correlation and rank correlation. Finally, we formulate these two issues into a unified optimization problem of feature selection and present an efficient solution. The experiments are conducted on the public available Images of Groups dataset and the FG-NET dataset, and the experimental results demonstrate the power of the proposed method against the state-of-the-art methods.
Keywords :
age issues; correlation methods; face recognition; feature extraction; learning (artificial intelligence); optimisation; FG-NET dataset; aging process continuous characteristics; aging process ordinal characteristics; facial age estimation; facial image local manifold structure preservation; feature selection; groups dataset image; locality information; nonlinear correlation minimization; optimization problem; ordinal discriminative feature learning; ordinal information; rank correlation minimization; Aging; Correlation; Estimation; Feature extraction; Manifolds; Optimization; Training;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2012.6247975