Title :
Weak attributes for large-scale image retrieval
Author :
Yu, Felix X. ; Ji, Rongrong ; Tsai, Ming-Hen ; Ye, Guangnan ; Chang, Shih-Fu
Author_Institution :
Columbia Univ., New York, NY, USA
Abstract :
Attribute-based query offers an intuitive way of image retrieval, in which users can describe the intended search targets with understandable attributes. In this paper, we develop a general and powerful framework to solve this problem by leveraging a large pool of weak attributes comprised of automatic classifier scores or other mid-level representations that can be easily acquired with little or no human labor. We extend the existing retrieval model of modeling dependency within query attributes to modeling dependency of query attributes on a large pool of weak attributes, which is more expressive and scalable. To efficiently learn such a large dependency model without overfitting, we further propose a semi-supervised graphical model to map each multiattribute query to a subset of weak attributes. Through extensive experiments over several attribute benchmarks, we demonstrate consistent and significant performance improvements over the state-of-the-art techniques. In addition, we compile the largest multi-attribute image retrieval dateset to date, including 126 fully labeled query attributes and 6,000 weak attributes of 0.26 million images.
Keywords :
image classification; image representation; image retrieval; attribute-based querying; automatic classifier score; large-scale image retrieval; mid-level representation; multiattribute image retrieval dataset; multiattribute query; semisupervised graphical model; weak attribute; Equations; Graphical models; Humans; Image retrieval; Mathematical model; Training; Yttrium;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2012.6248023