Title : 
Occlusion reasoning for object detection under arbitrary viewpoint
         
        
            Author : 
Hsiao, Edward ; Hebert, Martial
         
        
            Author_Institution : 
Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
         
        
        
        
        
        
            Abstract : 
We present a unified occlusion model for object instance detection under arbitrary viewpoint. Whereas previous approaches primarily modeled local coherency of occlusions or attempted to learn the structure of occlusions from data, we propose to explicitly model occlusions by reasoning about 3D interactions of objects. Our approach accurately represents occlusions under arbitrary viewpoint without requiring additional training data, which can often be difficult to obtain. We validate our model by extending the state-of-the-art LINE2D method for object instance detection and demonstrate significant improvement in recognizing textureless objects under severe occlusions.
         
        
            Keywords : 
computer graphics; inference mechanisms; object detection; object recognition; 3D object interactions; LINE2D method; arbitrary viewpoint; object instance detection; occlusion model; occlusion reasoning; occlusion representation; textureless object recognition; Approximation methods; Cognition; Computational modeling; Data models; Equations; Object detection; Solid modeling;
         
        
        
        
            Conference_Titel : 
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
         
        
            Conference_Location : 
Providence, RI
         
        
        
            Print_ISBN : 
978-1-4673-1226-4
         
        
            Electronic_ISBN : 
1063-6919
         
        
        
            DOI : 
10.1109/CVPR.2012.6248048