Title :
Temporal Spatial-Keyword Top-k publish/subscribe
Author :
Lisi Chen ; Gao Cong ; Xin Cao ; Kian-Lee Tan
Author_Institution :
Nanyang Technol. Univ., Singapore, Singapore
Abstract :
Massive amount of data that are geo-tagged and associated with text information are being generated at an unprecedented scale. These geo-textual data cover a wide range of topics. Users are interested in receiving up-to-date tweets such that their locations are close to a user specified location and their texts are interesting to users. For example, a user may want to be updated with tweets near her home on the topic “food poisoning vomiting.” We consider the Temporal Spatial-Keyword Top-k Subscription (TaSK) query. Given a TaSK query, we continuously maintain up-to-date top-k most relevant results over a stream of geo-textual objects (e.g., geo-tagged Tweets) for the query. The TaSK query takes into account text relevance, spatial proximity, and recency of geo-textual objects in evaluating its relevance with a geo-textual object. We propose a novel solution to efficiently process a large number of TaSK queries over a stream of geotextual objects. We evaluate the efficiency of our approach on two real-world datasets and the experimental results show that our solution is able to achieve a reduction of the processing time by 70-80% compared with two baselines.
Keywords :
geographic information systems; message passing; middleware; query processing; TaSK query; geo-textual data; temporal spatial-keyword Top-k publish-subscribe; up-to-date tweets; Continuous wavelet transforms; Social network services;
Conference_Titel :
Data Engineering (ICDE), 2015 IEEE 31st International Conference on
Conference_Location :
Seoul
DOI :
10.1109/ICDE.2015.7113289