Title :
Macropower: A coarse-grain power profiling framework for energy-efficient cloud computing
Author :
Zhang, Ziming ; Fu, Song
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of North Texas, Denton, TX, USA
Abstract :
Power and energy consumption has become a major concern in modern data centers and cloud systems. In order to develop efficient power management mechanisms for green clouds, we need a deep understanding of the influence of system configurations on the power consumption in real cloud systems. Power profiling provides such a vehicle. Existing fine-grain profiling approaches require special hardwired connections to the pins of individual hardware devices, which is not practical for large-scale production clouds. Moreover, they cannot provide a macroscopic view of the cloud-wide power dynamics. In this paper, we present macropower, a coarse-grain power and energy profiling framework. It provides a combination of hardware and software tools that achieves power/energy profiling at server granularity. It uses direct or derived measurements to isolate and combine influences from system components in cloud power profiles. It also generates the correlations between system activities and server/cloud-wide power/energy usage. We implement a prototype of macropower and test it in a cloud testbed. The profiled data are analyzed and the impact of system configurations on the server/cloud power usage is quantified, which is valuable for autonomic and energy-efficient management of cloud resources.
Keywords :
cloud computing; computer centres; power aware computing; power consumption; software tools; cloud-wide power dynamics; cloud-wide power usage; coarse-grain power profiling framework; data centers; energy consumption; energy efficient cloud computing; energy-efficient cloud resource management; green cloud system; hardware devices; macropower; power consumption; power management mechanisms; software tools; Cloud computing; Energy consumption; Hardware; Memory management; Power demand; Power measurement; Servers;
Conference_Titel :
Performance Computing and Communications Conference (IPCCC), 2011 IEEE 30th International
Conference_Location :
Orlando, FL
Print_ISBN :
978-1-4673-0010-0
DOI :
10.1109/PCCC.2011.6108061