DocumentCode :
2722968
Title :
Non-rigid coregistration of diffusion kurtosis data
Author :
Veraart, J. ; Van Hecke, W. ; Blockx, I. ; Van der Linden, A. ; Verhoye, M. ; Sijbers, J.
Author_Institution :
Dept. of Phys., Univ. of Antwerp, Antwerp, Belgium
fYear :
2010
fDate :
14-17 April 2010
Firstpage :
392
Lastpage :
395
Abstract :
Diffusion kurtosis imaging (DKI) is a relatively new model to study the non-Gaussian behavior of water diffusion in the brain white matter which introduces, besides the conventional diffusion tensor, a 4th order, 3D diffusion kurtosis tensor to describe the diffusion. In this study, a multi-component coregistration algorithm using a viscous fluid model and mutual information is optimized to enable more accurate alignment of the higher order tensor DKI data. The preservation of principle strategy is extended in order to facilitate tensor reorientation of the diffusion and diffusion kurtosis tensors. In addition, experiments demonstrated that involving kurtosis information in the coregistration procedure significantly improves tensor alignment.
Keywords :
biodiffusion; biomedical MRI; brain; image registration; medical image processing; neurophysiology; water; brain white matter; diffusion kurtosis data; diffusion tensor; kurtosis information; multicomponent coregistration algorithm; mutual information; nonGaussian property; nonrigid coregistration; tensor DKI data; tensor alignment; tensor reorientation; viscous fluid model; water diffusion; Attenuation; Biomembranes; Brain modeling; Diffusion tensor imaging; Hospitals; Microstructure; Pathology; Probes; Radiology; Tensile stress; Diffusion Kurtosis Imaging; Non-rigid coregistration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on
Conference_Location :
Rotterdam
ISSN :
1945-7928
Print_ISBN :
978-1-4244-4125-9
Electronic_ISBN :
1945-7928
Type :
conf
DOI :
10.1109/ISBI.2010.5490326
Filename :
5490326
Link To Document :
بازگشت