DocumentCode :
2724670
Title :
Gaussian Process Latent Variable Models for Fault Detection
Author :
Eciolaza, Luka ; Alkarouri, M. ; Lawrence, N.D. ; Kadirkamanathan, V. ; Fleming, P.J.
Author_Institution :
Dept. of Autom. Control & Syst. Eng., Sheffield Univ.
fYear :
2007
fDate :
March 1 2007-April 5 2007
Firstpage :
287
Lastpage :
292
Abstract :
The Gaussian process latent variable model (GPLVM) is a novel unsupervised approach to nonlinear low dimensional embedding proposed by Lawrence (2005). This paper presents the development of a framework for the implementation of the GPLVM for fault detection. A series of experiments have been carried out comparing and combining the GPLVM to the conventional and widely used linear dimension reduction technique of principal component analysis (PCA). The inclusion of the GPLVM for the visualisation and data analysis, led to a considerable improvement in the classification results
Keywords :
Gaussian processes; data analysis; data reduction; principal component analysis; Gaussian process latent variable models; data analysis; data visualisation; dimensionality reduction; fault detection; linear dimension reduction; principal component analysis; unsupervised approach; Automatic control; Computational intelligence; Condition monitoring; Data analysis; Failure analysis; Fault detection; Gaussian processes; Information analysis; Principal component analysis; Testing; Dimensionality reduction; Fault detection; Principal Component Analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Data Mining, 2007. CIDM 2007. IEEE Symposium on
Conference_Location :
Honolulu, HI
Print_ISBN :
1-4244-0705-2
Type :
conf
DOI :
10.1109/CIDM.2007.368886
Filename :
4221310
Link To Document :
بازگشت