Title :
Parameter optimization for BIRCH pre-clustering algorithm
Author :
Kovács, László ; Bednarik, László
Author_Institution :
Dept. of Inf. Technol., Univ. of Miskolc, Miskolc, Hungary
Abstract :
The pre-clustering is an efficient data reduction method in the case of large data sets. In the pre-clustering process, an important aspect is to provide a good intra-cluster similarity. Most of the traditional methods do not consider this aspect and they generate weak clusters. The paper presents some algorithms to optimize the key parameters (like branching factor, quality threshold and selection of the separator line) of the BIRCH pre-clustering method.
Keywords :
data reduction; optimisation; pattern clustering; BIRCH preclustering algorithm; branching factor; data reduction method; intracluster similarity; parameter optimization; quality threshold; separator line selection; Algorithm design and analysis; Clustering algorithms; Optimization; Particle separators; Partitioning algorithms; Software; Software algorithms;
Conference_Titel :
Computational Intelligence and Informatics (CINTI), 2011 IEEE 12th International Symposium on
Conference_Location :
Budapest
Print_ISBN :
978-1-4577-0044-6
DOI :
10.1109/CINTI.2011.6108553