DocumentCode :
272745
Title :
Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation
Author :
Sutarto, Herman Yoseph ; Boel, René K. ; Joelianto, Endra
Author_Institution :
Syst. Res. Group, Univ. of Ghent, Zwijnaarde, Belgium
Volume :
9
Issue :
11
fYear :
2015
fDate :
7 16 2015
Firstpage :
1683
Lastpage :
1691
Abstract :
This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation - free flowing, congested or faulty - making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator.
Keywords :
Markov processes; autoregressive processes; expectation-maximisation algorithm; matrix algebra; parameter estimation; particle filtering (numerical methods); road traffic; AR stochastic process; EM parameter estimation; EM technique; adaptive model-based filter; adaptive traffic flow state estimator; data-based approach; expectation-maximisation technique; feedback control; first-order Markov chain; jump Markov process; mode switching; mode-dependent first-order autoregressive stochastic process; online particle filter; signalised intersections; smoothed inference algorithms; stochastic hybrid model; time-window shift technique; traffic flow rate; traffic lights; transition matrix estimation; urban traffic flow estimation; urban traffic network;
fLanguage :
English
Journal_Title :
Control Theory & Applications, IET
Publisher :
iet
ISSN :
1751-8644
Type :
jour
DOI :
10.1049/iet-cta.2014.0909
Filename :
7151865
Link To Document :
بازگشت