DocumentCode :
2727692
Title :
Adaptive local search parameters for real-coded memetic algorithms
Author :
Molina, Daniel ; Herrera, Francisco ; Lozano, Manuel
Author_Institution :
Dept. of Comput. Sci. & Al, Granada Univ.
Volume :
1
fYear :
2005
fDate :
5-5 Sept. 2005
Firstpage :
888
Abstract :
This paper presents a real-coded memetic algorithm that combines a high diversity global exploration with an adaptive local search method to the most promising individuals that adjusts the local search probability and the local search depth. In our proposal we use the individual fitness to decide when local search will be applied (local search probability) and how many effort should be applied (the local search depth), focusing the local search effort on the most promising regions. We divide the individuals of the population into three different categories and we assign different values of the above local search parameters to the individual in function of the category to which that individual belongs. In this study, we analyze the performance of our proposal when tackling the test problems proposed for the Special Session of the IEEE Congress on Evolutionary Computation 2005
Keywords :
genetic algorithms; probability; search problems; adaptive local search parameters; evolutionary computation; high diversity global exploration; local search depth; local search probability; real-coded memetic algorithm; Algorithm design and analysis; Biological cells; Computer science; Evolutionary computation; Genetic algorithms; Genetic mutations; Performance analysis; Proposals; Search methods; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2005. The 2005 IEEE Congress on
Conference_Location :
Edinburgh, Scotland
Print_ISBN :
0-7803-9363-5
Type :
conf
DOI :
10.1109/CEC.2005.1554777
Filename :
1554777
Link To Document :
بازگشت