DocumentCode :
2729193
Title :
A unified approach for lesion segmentation on MRI of multiple sclerosis
Author :
Sajja, B.R. ; Datta, S. ; He, R. ; Narayana, P.A.
Author_Institution :
Dept. of Radiol., Texas Univ., Houston, TX, USA
Volume :
1
fYear :
2004
fDate :
1-5 Sept. 2004
Firstpage :
1778
Lastpage :
1781
Abstract :
Accurate determination of lesion volumes on brain MR images is hampered by the presence of a large number of false positive and negative classifications. A strategy that combines parametric and nonparametric techniques is developed and implemented for minimizing the false classifications. Initially, CSF and lesions are segmented using Parzen window classifier. Image processing, morphological operations, and ratio map of proton density (PD) and T2 weighted images are used for minimizing false positives. Lesions are delineated using fuzzy connectedness principle. Contextual information was used for minimizing false negative lesion classifications. Gray and white matter classification is realized using HMRF-EM algorithm.
Keywords :
biomedical MRI; brain; fuzzy set theory; hidden Markov models; image classification; medical image processing; Parzen window classifier; T2 weighted images; brain MR images; contextual information; false negative classification; false positive classification; fuzzy connectedness; gray matter classification; hidden Markov random field-expectation maximization algorithm; image processing; lesion segmentation; lesion volumes; morphological operations; multiple sclerosis; nonparametric technique; parametric technique; proton density; white matter classification; Clinical trials; Hidden Markov models; Image processing; Image segmentation; Lesions; Magnetic resonance; Magnetic resonance imaging; Morphological operations; Multiple sclerosis; Protons; MRI; Multiple Sclerosis; Segmentation; feature classification; morphological operators;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE
Conference_Location :
San Francisco, CA
Print_ISBN :
0-7803-8439-3
Type :
conf
DOI :
10.1109/IEMBS.2004.1403532
Filename :
1403532
Link To Document :
بازگشت