Title :
Collecting and Maintaining Just-in-Time Statistics
Author :
El-Helw, A. ; Ilyas, I.F. ; Wing Lau ; Markl, V. ; Zuzarte, C.
Author_Institution :
Waterloo Univ., Ont., Canada
Abstract :
Traditional DBMSs decouple statistics collection and query optimization both in space and time. Decoupling in time may lead to outdated statistics. Decoupling in space may cause statistics not to be available at the desired granularity needed to optimize a particular query, or some important statistics may not be available at all. Overall, this decoupling often leads to large cardinality estimation errors and, in consequence, to the selection of suboptimal plans for query execution. In this paper, we present JITS, a system for proactively collecting query-specific statistics during query compilation. The system employs a lightweight sensitivity analysis to choose which statistics to collect by making use of previously collected statistics and database activity patterns. The collected statistics are materialized and incrementally updated for later reuse. We present the basic concepts, architecture, and key features of JITS. We demonstrate its benefits through an extensive experimental study on a prototype inside the IBM DB2 engine.
Keywords :
database management systems; query processing; statistics; DBMS; cardinality estimation error; just-in-time statistics; lightweight sensitivity analysis; query compilation; query optimization; query-specific statistics; statistics collection; Cost function; Estimation error; Monitoring; Prototypes; Query processing; Sensitivity analysis; Spatial databases; Statistical analysis; Statistical distributions; Statistics;
Conference_Titel :
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on
Conference_Location :
Istanbul
Print_ISBN :
1-4244-0802-4
DOI :
10.1109/ICDE.2007.367897