DocumentCode :
2731761
Title :
Improved estimates for the minimum distance of weighted degree Z 4 trace codes
Author :
Helleseth, Tor ; Kumar, P. Vijay ; Moreno, Oscar ; Shanbhag, Abhijit G.
Author_Institution :
Dept. of Inf., Bergen Univ., Norway
fYear :
1995
fDate :
17-22 Sep 1995
Firstpage :
283
Abstract :
A recently derived upper bound for Weil-type exponential sums over Galois rings leads directly to an estimate for the minimum Lee distance of Z4-linear trace codes. In this paper, an improved minimum distance estimate is presented. The improved estimate is tight for the Kerdock code as well as for the Delsarte-Goethals´ codes
Keywords :
Galois fields; estimation theory; linear codes; Delsarte-Goethals´ codes; Galois rings; Kerdock code; Weil-type exponential sums; estimates; linear trace codes; minimum Lee distance; minimum distance; upper bound; weighted degree Z4 trace codes; Councils; Hamming weight; Informatics; Mathematics; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1995. Proceedings., 1995 IEEE International Symposium on
Conference_Location :
Whistler, BC
Print_ISBN :
0-7803-2453-6
Type :
conf
DOI :
10.1109/ISIT.1995.535798
Filename :
535798
Link To Document :
بازگشت