DocumentCode :
2733633
Title :
Adaptive Classifier for Robust Detection of Signing Articulators Based on Skin Colour
Author :
Khan, Shujjat ; Bailey, Donald ; Gupta, Gourab Sen ; Demidenko, Serge
Author_Institution :
Sch. of Eng. & Adv. Technol. (SEAT), Massey Univ., Palmerston North, New Zealand
fYear :
2011
fDate :
17-19 Jan. 2011
Firstpage :
259
Lastpage :
262
Abstract :
The proposed classifier is a novel skin detector that outperforms most of the existing approaches by dropping most of the non-skin pixels in its earlier stages of weak classifiers. Only the pixels with maximum skin likelihood are processed in later adaptive classifier. Parametric background modelling and validation based online training significantly improves the robustness of the whole classifier in any daily-life lighting conditions.
Keywords :
gesture recognition; image classification; image colour analysis; maximum likelihood estimation; object detection; skin; adaptive classifier; maximum skin likelihood; parametric background modelling; robust signing articulator detection; skin colour; skin detector; Adaptation model; Detectors; Image color analysis; Lighting; Pixel; Skin; Training; Background model; Skin detector; adaptive histogram; cascaded classifier; non-parametric model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electronic Design, Test and Application (DELTA), 2011 Sixth IEEE International Symposium on
Conference_Location :
Queenstown
Print_ISBN :
978-1-4244-9357-9
Type :
conf
DOI :
10.1109/DELTA.2011.54
Filename :
5729578
Link To Document :
بازگشت