DocumentCode :
2748675
Title :
A clustering algorithm by deterministic annealing and its global convergence
Author :
Zhang, Zhihua ; Zheng, Naming ; Shi, Gang
Author_Institution :
Inst. of Artificial Intelligence, Xi´´an Jiaotong Univ., China
Volume :
3
fYear :
2000
fDate :
2000
Firstpage :
1546
Abstract :
The deterministic annealing (DA) is a useful approach to clustering and related optimization problems. With a view to the optimization problem, the clustering algorithm by DA is reformulated in this paper. An important global convergence theorem about this clustering algorithm has been proved
Keywords :
convergence; optimisation; pattern clustering; simulated annealing; DA; clustering algorithm; deterministic annealing; global convergence; global convergence theorem; Artificial intelligence; Clustering algorithms; Computational modeling; Convergence; Data analysis; Partitioning algorithms; Prototypes; Relaxation methods; Simulated annealing; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on
Conference_Location :
Beijing
Print_ISBN :
0-7803-5747-7
Type :
conf
DOI :
10.1109/ICOSP.2000.893394
Filename :
893394
Link To Document :
بازگشت