DocumentCode :
2750860
Title :
Nonlinear parameter neuro-estimation for optimal tuning of power system stabilizers
Author :
Seung-Monk Back ; Park, Jung-Wook
Author_Institution :
Sch. of Electr. & Electron. Eng., YONSEI Univ., Seoul
fYear :
2008
fDate :
13-16 July 2008
Firstpage :
921
Lastpage :
926
Abstract :
This paper describes nonlinear parameter estimation of non-smooth nonlinear device by using a feed-forward neural network (FFNN) embedded in a hybrid system modeling. The hybrid systems are modeled by the differential-algebraic-impulsive-switched (DAIS) structure. In a switched linear hybrid system, the FFNN is applied to identify full dynamics of an objective function J formed by the states. Moreover, the partial derivatives of function J with respect to the each state are approximated by the computation of the backpropagation through the FFNN. Then, this paper focuses on the FFNN based estimator for the non-smooth nonlinear dynamic behaviors due to saturation limiter of the power system stabilizer (PSS) in both a single machine infinite bus (SMIB) system and a multi-machine power system (MMPS).
Keywords :
backpropagation; feedforward neural nets; neurocontrollers; nonlinear estimation; parameter estimation; power system stability; backpropagation; differential-algebraic-impulsive-switched structure; feedforward neural network; hybrid system modeling; multimachine power system; nonlinear parameter estimation; nonlinear parameter neuro-estimation; nonsmooth nonlinear device; nonsmooth nonlinear dynamic behaviors; optimal tuning; power system stabilizers; saturation limiter; single machine infinite bus system; switched linear hybrid system; Backpropagation; Feedforward neural networks; Feedforward systems; Hybrid power systems; Neural networks; Nonlinear dynamical systems; Parameter estimation; Power system dynamics; Power system modeling; Power systems; Estimation; feed-forward neural network; hybrid system; power system stabilizer; saturation limiter; synchronous generator;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on
Conference_Location :
Daejeon
ISSN :
1935-4576
Print_ISBN :
978-1-4244-2170-1
Electronic_ISBN :
1935-4576
Type :
conf
DOI :
10.1109/INDIN.2008.4618233
Filename :
4618233
Link To Document :
بازگشت