Title :
Ultralow current density RTDs for tunneling-based SRAM
Author :
van der Wagt, J.P.A. ; Seabaugh, A.C. ; Klimeck, G. ; Beam, E.A., III ; Boykin, T.B. ; Bowen, R.C. ; Lake, R.
Author_Institution :
Raytheon TI Syst., Dallas, TX, USA
Abstract :
We report an improved tunneling-based SRAM (TSRAM) cell design using symmetric low current density InGaAs/InAlAs/AlAs/InAs resonant-tunneling diodes (RTD´s). The new design eliminates an interconnect compared to the previous record low 50 nW TSRAM cell demonstrated with asymmetric low current density RTDs and heterostructure field-effect transistors (HFETs) in our InP-based integrated process. The simplified cell has 4× smaller area than III-V FET-only SRAM cells at the same design rule. We also investigate experimentally and theoretically the mechanism for reduced peak-to-valley current ratios for very low current density (~1 A/cm2) RTDs which affects TSRAM cell standby power
Keywords :
III-V semiconductors; SRAM chips; aluminium compounds; current density; gallium arsenide; indium compounds; resonant tunnelling diodes; InGaAs-InAlAs-AlAs-InAs; InGaAs/InAlAs/AlAs/InAs resonant-tunneling diodes; InP-based integrated process; TSRAM cell design; asymmetric low current density RTDs; heterostructure field-effect transistors; mechanism; reduced peak-to-valley current ratios; standby power; tunneling-based SRAM; ultralow current density RTDs; Capacitance; Current density; Density estimation robust algorithm; HEMTs; III-V semiconductor materials; Integrated circuit interconnections; Lakes; MODFETs; Random access memory; Semiconductor diodes;
Conference_Titel :
Compound Semiconductors, 1997 IEEE International Symposium on
Conference_Location :
San Diego, CA
Print_ISBN :
0-7503-0556-8
DOI :
10.1109/ISCS.1998.711749