DocumentCode :
2762899
Title :
Unsupervised texture segmentation using stochastic version of the EM algorithm and data fusion
Author :
Cruz, Carlos Avils
Author_Institution :
Dept. de Electr., Univ. Autonoma Metropolitana, San Pablo, Mexico
Volume :
2
fYear :
1998
fDate :
16-20 Aug 1998
Firstpage :
1005
Abstract :
In this paper I present a new methodology for texture segmentation. This methodology is based through the high order statistics features, the data fusion techniques and finally though the maximum likelihood method in order to find the clusters. The methodology is applied in order to segment natural micro-textures
Keywords :
higher order statistics; image segmentation; image texture; maximum likelihood estimation; sensor fusion; clusters; data fusion; expectation maximisation; high-order statistics features; maximum likelihood method; natural micro-texture segmentation; stochastic EM algorithm; unsupervised texture segmentation; Character recognition; Delay estimation; Feature extraction; Frequency domain analysis; Parallel architectures; Radar; Robots; Robustness; Statistics; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
Conference_Location :
Brisbane, Qld.
ISSN :
1051-4651
Print_ISBN :
0-8186-8512-3
Type :
conf
DOI :
10.1109/ICPR.1998.711859
Filename :
711859
Link To Document :
بازگشت