Title :
Modeling 20-nm Germanium FinFET With the Industry Standard FinFET Model
Author :
Khandelwal, Sourabh ; Duarte, Juan Pablo ; Chauhan, Yogesh Singh ; Chenming Hu
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
Abstract :
In this letter, we present modeling results for germanium p-type FinFETs using the industry standard Berkeley Spice Common Multi-gate Field Effect Transistor (BSIM-CMG) model. The effect of perpendicular electrical field on hole mobility in germanium FinFETs is found to be different from silicon FinFETs. We present an updated Ge mobility equation to account for this difference. With this single update, BSIM-CMG agrees very well with the measured I-V data of Ge FinFETs with a gate-length from 130 to 20 nm. We conclude that a production quality standard model is available for simulation of circuits employing p-type Ge FinFET.
Keywords :
MOSFET; elemental semiconductors; germanium; hole mobility; semiconductor device models; BSIM-CMG model; Ge; circuit simulation; germanium FinFET modeling; germanium p-type FinFET; hole mobility; industry standard Berkeley Spice common multigate field effect transistor model; industry standard FinFET model; measured I-V data; perpendicular electrical field; production quality standard model; silicon FinFET; size 130 nm to 20 nm; updated germanium mobility equation; FinFETs; Germanium; Integrated circuit modeling; Logic gates; Mathematical model; Semiconductor device modeling; Silicon; BSIM-CMG; FinFETs; Germanium; compact models; compact models.;
Journal_Title :
Electron Device Letters, IEEE
DOI :
10.1109/LED.2014.2323956