Title :
Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/NEMS
Author_Institution :
Sch. of Mater. Sci. & Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Abstract :
Two new fields are introduced to MEMS/NEMS: a nanogenerator that harvests mechanical energy for powering nanosystems, and strained induced piezotronics for smart MEMS. Fundamentally, due to the polarization of ions in a crystal that has non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. The principle of harvesting irregular mechanical energy by the nanogenerator relies on the piezopotenital driven transient flow of electrons in external load, which can be resulted from body motion, muscle stretching, breathing, tiny mechanical vibration/disturbance, sonic wave etc. As of today, a gentle straining can output 1-3 V at an instant output power of ~2 μW from an integrated nanogenerator of a very thin sheet of 1 cm2 in size. This technology has the potential applications for power MEMS/NEMS that requires a power in the μW to mW range. Furthermore, we have replaced the externally applied gate voltage to a CMOS field effect transistor by the strain induced piezopotential as a “gate” voltage to tune/control the charge transport from source to drain. The devices fabricated by this principle are called piezotronics, with applications in strain/force/pressure triggered/controlled electronic devices, sensors and logic units.
Keywords :
II-VI semiconductors; III-V semiconductors; biomedical equipment; electric generators; energy harvesting; gallium compounds; indium compounds; micromechanical devices; nanoelectromechanical devices; nanomedicine; nanotechnology; piezoelectric devices; pneumodynamics; zinc compounds; CMOS field effect transistor; GaN; InN; ZnO; breathing; charge transport; electron transient flow; gate voltage; logic unit; mechanical energy harvesting; muscle stretching; nanogenerators; noncentral symmetry; piezoelectric potential; self-powering nanosystems; sensors; smart MEMS; smart NEMS; sonic wave; strain induced piezopotential; strain-force-pressure triggered-controlled electronic devices; strained induced piezotronics; voltage 1 V to 3 V; Electric potential; Logic gates; Piezoelectric polarization; Strain; Substrates; Wire; Zinc oxide;
Conference_Titel :
Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on
Conference_Location :
Cancun
Print_ISBN :
978-1-4244-9632-7
Electronic_ISBN :
1084-6999
DOI :
10.1109/MEMSYS.2011.5734375