Title :
A Map-Reduce System with an Alternate API for Multi-core Environments
Author :
Jiang, Wei ; Ravi, Vignesh T. ; Agrawal, Gagan
Author_Institution :
Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA
Abstract :
Map-reduce framework has received a significant attention and is being used for programming both large-scale clusters and multi-core systems. While the high productivity aspect of map-reduce has been well accepted, it is not clear if the API results in efficient implementations for different subclasses of data-intensive applications. In this paper, we present a system MATE (Map-reduce with an Alternate API), that provides a high-level, but distinct API. Particularly, our API includes a programmer-managed reduction object, which results in lower memory requirements at runtime for many data-intensive applications. MATE implements this API on top of the Phoenix system, a multi-core map-reduce implementation from Stanford. We evaluate our system using three data mining applications, and compare its performance to that of both Phoenix and Hadoop. Our results show that for all the three applications, MATE outperforms Phoenix and Hadoop. Despite achieving good scalability, MATE also maintains the easy-to-use API of map-reduce. Overall, we argue that, our approach, which is based on the generalized reduction structure, provides an alternate high-level API, leading to more efficient and scalable implementations.
Keywords :
data mining; middleware; multiprocessing systems; MATE; Phoenix system; data mining; data-intensive application; large-scale clusters; map-reduce with alternaTE API; middleware; multicore system; programmer-managed reduction object; Clouds; Computer science; Data mining; Grid computing; Large-scale systems; Productivity; Programming profession; Runtime; Scalability; Yarn; Data-intensive computing; Map-Reduce; Middleware; Multi-Core Architectures;
Conference_Titel :
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on
Conference_Location :
Melbourne, VIC
Print_ISBN :
978-1-4244-6987-1
DOI :
10.1109/CCGRID.2010.10