Title :
Agglomerative information bottleneck for speaker diarization of meetings data
Author :
Vijayasenan, Deepu ; Valente, Fabio ; Bourlard, Hervé
Author_Institution :
IDIAP Res. Inst., Martigny
Abstract :
In this paper, we investigate the use of agglomerative information bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian mixture models, the proposed algorithm is completely non parametric . Both clustering and model selection issues of non-parametric models are addressed in this work. The proposed algorithm is evaluated on meeting data on the RT06 evaluation data set. The system is able to achieve diarization error rates comparable to state-of-the-art systems at a much lower computational complexity.
Keywords :
Gaussian processes; speaker recognition; Gaussian mixture models; agglomerative information bottleneck; speaker diarization task; Art; Automatic speech recognition; Clustering algorithms; Computational complexity; Error analysis; Hidden Markov models; Mutual information; Parametric statistics; Streaming media; Vocabulary; Meetings data; Speaker Diarization; agglomerative Information Bottleneck;
Conference_Titel :
Automatic Speech Recognition & Understanding, 2007. ASRU. IEEE Workshop on
Conference_Location :
Kyoto
Print_ISBN :
978-1-4244-1746-9
Electronic_ISBN :
978-1-4244-1746-9
DOI :
10.1109/ASRU.2007.4430119