DocumentCode :
2770659
Title :
Applying steady state in genetic algorithm for robot behaviors
Author :
Baneamoon, Saeed Mohammed ; Salam, Rosalina Abdul
Author_Institution :
Sch. of Comput. Sci., Univ. Sains Malaysia, Minden
fYear :
2008
fDate :
1-3 Dec. 2008
Firstpage :
1
Lastpage :
6
Abstract :
In this paper distributed learning classifier system is used to design a control system for robot. We suggest an enhanced approach to determine the steady state values for the strength and the bid of classifiers to call genetic algorithm (GA) that works in rule discovery system in learning classifier system (LCS) in order to improve the efficiency and accuracy of robot to be able to perform its correct action.
Keywords :
genetic algorithms; learning (artificial intelligence); robot kinematics; distributed learning classifier system; genetic algorithm; robot behaviors; robot control system design; steady state values; CMOS technology; Decoding; Design engineering; Digital signal processing chips; Digital-analog conversion; Genetic algorithms; Latches; Robots; Steady-state; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electronic Design, 2008. ICED 2008. International Conference on
Conference_Location :
Penang
Print_ISBN :
978-1-4244-2315-6
Electronic_ISBN :
978-1-4244-2315-6
Type :
conf
DOI :
10.1109/ICED.2008.4786678
Filename :
4786678
Link To Document :
بازگشت