DocumentCode :
2772487
Title :
A Bootstrap Approach to Eigenvalue Correction
Author :
Hendrikse, Anne ; Spreeuwers, Luuk ; Veldhuis, Raymond
Author_Institution :
Signals & Syst. Group, Univ. of Twente, Enschede, Netherlands
fYear :
2009
fDate :
6-9 Dec. 2009
Firstpage :
818
Lastpage :
823
Abstract :
Eigenvalue analysis is an important aspect in many data modeling methods. Unfortunately, the eigenvalues of the sample covariance matrix (sample eigenvalues) are biased estimates of the eigenvalues of the covariance matrix of the data generating process (population eigenvalues). We present a new method based on bootstrapping to reduce the bias in the sample eigenvalues: the eigenvalue estimates are updated in several iterations, where in each iteration synthetic data is generated to determine how to update the population eigenvalue estimates. Comparison of the bootstrap eigenvalue correction with a state of the art correction method by Karoui shows that depending on the type of population eigenvalue distribution, sometimes the Karoui method performs better and sometimes our bootstrap method.
Keywords :
bootstrapping; covariance matrices; data models; eigenvalues and eigenfunctions; Karoui; bootstrap approach; covariance matrix; data generating process; data modeling methods; eigenvalue correction; sample covariance matrix; Covariance matrix; Data mining; Eigenvalues and eigenfunctions; Linear discriminant analysis; Matrix decomposition; Multidimensional systems; Random variables; Statistical analysis; Statistical distributions; Statistics; bootstrapping; eigenvalue correction; general statistical analysis; isotonic tree method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, 2009. ICDM '09. Ninth IEEE International Conference on
Conference_Location :
Miami, FL
ISSN :
1550-4786
Print_ISBN :
978-1-4244-5242-2
Electronic_ISBN :
1550-4786
Type :
conf
DOI :
10.1109/ICDM.2009.111
Filename :
5360317
Link To Document :
بازگشت