DocumentCode :
2773835
Title :
GLSVM: Integrating Structured Feature Selection and Large Margin Classification
Author :
Fei, Hongliang ; Quanz, Brian ; Huan, Jun
Author_Institution :
EECS Dept., Univ. of Kansas, Lawrence, KS, USA
fYear :
2009
fDate :
6-6 Dec. 2009
Firstpage :
362
Lastpage :
367
Abstract :
High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L2 norm regularization term including the normalized Laplacian of the graph and L1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.
Keywords :
Laplace equations; pattern classification; support vector machines; GLSVM; biological pathways; feature selection; genes; high dimensional data; margin classification; microarray data analysis; norm regularization term; normalized Laplacian; penalty function; support vector machine; Cloud computing; Clustering algorithms; Computer networks; Conferences; Costs; Data mining; Data processing; Decision trees; Machine learning algorithms; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops, 2009. ICDMW '09. IEEE International Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-5384-9
Electronic_ISBN :
978-0-7695-3902-7
Type :
conf
DOI :
10.1109/ICDMW.2009.39
Filename :
5360432
Link To Document :
بازگشت