Title :
RBF neural network model and its application in the prediction of output in oilfield
Author :
Zhu, Changjun ; Wang, Yanmin
Author_Institution :
Coll. of Urban Constr., Hebei Univ. of Eng., Handan, China
Abstract :
In view of difficulty to predict the output in oilfield which affected by multi-variables, RBF neural network model is set up to predict the output in oilfield because the classic statistics method and static model can not meet the demand of precision to the nonlinear and uncertain system. Effective depth, permeability, porosity and water content are as the input of neural network and oilfield output as the output of the neural network. The results show that this prediction approach is very effective and has higher accuracy. The results show that the model can forecast the oilfield output with accuracy comparable to other classic method. So the RBF neural network is an effective method to predict the oilfield output with high accuracy. The application of this approach can supply reliable data for the development of oilfield and decrease the risks for the exploitation.
Keywords :
nonlinear systems; petroleum industry; production engineering computing; radial basis function networks; statistical analysis; uncertain systems; RBF neural network model; nonlinear system; oilfield output; static model; statistics method; uncertain system; Artificial neural networks; Biological neural networks; Biological system modeling; Brain modeling; Educational institutions; Electronic mail; Function approximation; Neural networks; Predictive models; Statistics; RBF neural network; artificial neural network; nonlinear; output in oilfield; prediction;
Conference_Titel :
Control and Decision Conference, 2009. CCDC '09. Chinese
Conference_Location :
Guilin
Print_ISBN :
978-1-4244-2722-2
Electronic_ISBN :
978-1-4244-2723-9
DOI :
10.1109/CCDC.2009.5191465