Title :
Face Recognition by Fusing Local and Global Discriminant Features
Author :
Chowdhury, Shiladitya ; Sing, Jamuna Kanta ; Basu, Dipak Kumar ; Nasipuri, Mita
Author_Institution :
Dept. of Master of Comput. Applic., Techno India, Kolkata, India
Abstract :
This paper presents a novel scheme for face recognition by fusing local and global discriminant features. It has been observed that facial changes are occurred due to variations in facial expression, illumination condition, pose, etc. and these changes are often appeared only some regions of the whole image. The global features extracted from the whole image are not able to cope with these facial changes. To cope with the above facial changes face images are divided into a number of non-overlapping smaller sub-images and discriminant features are extracted from these sub-images as well as from the whole image. All these extracted local and global features are fused to form a large feature vector. We have used generalized two-dimensional fisher´s linear discriminate (G-2DFLD) method to extract these local and global discriminant features. We have used the fisher´s linear discriminate (FLD) method to extract lower dimensional discriminant features from the fused large feature vector. A Multi-class Support Vector Machine (SVM) is applied on these reduced feature vector for classification. The proposed method was evaluated on AT&T Face Database and experimental results show that the performance of the proposed method is better than other global feature extraction methods like PCA, 2DPCA, PCA+FLD, 2DFLD and G-2DFLD methods.
Keywords :
face recognition; feature extraction; image classification; principal component analysis; support vector machines; AT&T face database; face recognition; feature extraction; generalized two-dimensional fishers linear discriminate method; global discriminant feature fusion; local discriminant feature fusion; multiclass support vector machine; Databases; Face; Face recognition; Feature extraction; Principal component analysis; Support vector machines; Vectors; Face recognition; Feature extraction; Feature fusion; Generalized two-dimensional FLD;
Conference_Titel :
Emerging Applications of Information Technology (EAIT), 2011 Second International Conference on
Conference_Location :
Kolkata
Print_ISBN :
978-1-4244-9683-9
DOI :
10.1109/EAIT.2011.30