DocumentCode :
2775246
Title :
Learning multidimensional signal processing
Author :
Knutsson, Hans ; Borga, Magnus ; Landelius, Tomas
Author_Institution :
Comput. Vision Lab., Linkoping Univ., Sweden
Volume :
2
fYear :
1998
fDate :
16-20 Aug 1998
Firstpage :
1416
Abstract :
This paper presents our general strategy for designing learning machines as well as a number of particular designs. The search for methods allowing a sufficient level of adaptivity are based on two main principles: 1) simple adaptive local models; and 2) adaptive model distribution. Particularly important concepts in our work is mutual information and canonical correlation. Examples are given on learning feature descriptors, modeling disparity, synthesis of a global 3-mode model and a setup for reinforcement learning of online video coder parameter control
Keywords :
computer vision; correlation theory; feature extraction; learning (artificial intelligence); learning systems; adaptive local models; adaptive model distribution; canonical correlation; computer vision; feature descriptors; feature extraction; machine learning; modeling disparity; multidimensional signal processing; reinforcement learning; video coder; Computer science; Computer vision; Control theory; Data mining; Dynamic programming; Laboratories; Learning systems; Multidimensional signal processing; Mutual information; Optimal control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
Conference_Location :
Brisbane, Qld.
ISSN :
1051-4651
Print_ISBN :
0-8186-8512-3
Type :
conf
DOI :
10.1109/ICPR.1998.711968
Filename :
711968
Link To Document :
بازگشت