DocumentCode :
2781724
Title :
Unsupervised texture segmentation for multispectral remote-sensing images
Author :
Tseng, Din-Chang ; Tsai, Hung-Ming ; Lai, Chih-Ching
Author_Institution :
Inst. of Comput. Sci. & Inf. Eng., Nat. Central Univ., Chung-Li, Taiwan
Volume :
2
fYear :
1998
fDate :
16-20 Aug 1998
Firstpage :
1630
Abstract :
An unsupervised texture segmentation approach for multispectral remote-sensing images is proposed. Firstly, a scale-space filter (SSF) based histogram thresholding is used to threshold each spectrum space of a multispectral remote-sensing image to detect the major clusters of the multispectral data to generate the principal multispectrum set. Secondly, a GMRF (Gaussian Markov random field) is used to model the multispectral texture image, then the global GMRF parameters in a posteriori distribution probability are estimated. We label each pixel of the image based on the principal multispectrum set and the global GMRF parameters to maximize a posteriori distribution probability (MAP). Thirdly, a uniformity criterion is presented to each pixel in the global segmented image to determine whether it should be estimated the local MRF parameters or not. A max-min distance clustering method is then used to cluster the estimated local MRF parameters to further segment the image. Several remote-sensing images were processed by the proposed approach to demonstrate the segmentation ability
Keywords :
Gaussian distribution; Markov processes; filtering theory; geography; image segmentation; image texture; parameter estimation; remote sensing; GMRF; Gaussian Markov random field; MAP; MRF parameters; SSF-based histogram thresholding; global segmented image; major clusters; max-min distance clustering method; maximize a posteriori distribution probability; multispectral remote-sensing images; multispectral texture image; multispectrum set; remote-sensing images; scale-space filter; uniformity criterion; unsupervised texture segmentation; Clustering methods; Computer science; Histograms; Image segmentation; Markov random fields; Multispectral imaging; Parameter estimation; Pixel; Remote sensing; Spatial resolution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
Conference_Location :
Brisbane, Qld.
ISSN :
1051-4651
Print_ISBN :
0-8186-8512-3
Type :
conf
DOI :
10.1109/ICPR.1998.712029
Filename :
712029
Link To Document :
بازگشت