Title :
Wiener System identification using B-spline functions with De Boor recursion
Author :
Hong, Xia ; Mitchell, R.J. ; Chen, S.
Author_Institution :
Sch. of Syst. Eng., Univ. of Reading, Reading, UK
Abstract :
A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.
Keywords :
Gaussian processes; Wiener filters; signal processing; splines (mathematics); B-spline functions; B-spline neural network; De Boor recursion; Gauss-Newton algorithm; Wiener system identification; nonlinear static function approximation; parameter estimation; parameter initialization;
Conference_Titel :
Sensor Signal Processing for Defence (SSPD 2011)
Conference_Location :
London
Electronic_ISBN :
978-1-84919-661-1
DOI :
10.1049/ic.2011.0138