DocumentCode :
2784174
Title :
Neural Network for nanoscale architecture
Author :
Hé, Michel ; Klein, Jacques-Olivier ; Belhaire, Eric ; Joly, Mathilde ; Pinna, Andrea ; Garda, Patrick
Author_Institution :
Institut d´´Electronique Fondamentale, Université Paris Sud - CNRS, F-91405 Orsay, France
Volume :
1
fYear :
2006
fDate :
17-20 June 2006
Firstpage :
367
Lastpage :
370
Abstract :
In this paper, we investigate the use of analog neural networks to implement small logic function like Look Up Tables (LUT) in FPGA circuits (Field Programmable Gate Arrays). For that purpose, we present an architecture using tunable resistors or, alternatively, an original CNT-FET based synaptic cell. Finally, simulations demonstrate that learning using the Boltzmann machine algorithm can correct a defective circuit.
Keywords :
CNT-FET; Defect tolerance; Nanoscale architecture; Neural network; Circuit simulation; Field programmable analog arrays; Field programmable gate arrays; Logic functions; Machine learning; Neural networks; Programmable logic arrays; Resistors; Table lookup; Tunable circuits and devices; CNT-FET; Defect tolerance; Nanoscale architecture; Neural network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nanotechnology, 2006. IEEE-NANO 2006. Sixth IEEE Conference on
Print_ISBN :
1-4244-0077-5
Type :
conf
DOI :
10.1109/NANO.2006.247653
Filename :
1717103
Link To Document :
بازگشت