DocumentCode :
2784326
Title :
A Profit-Aware Virtual Machine Deployment Optimization Framework for Cloud Platform Providers
Author :
Chen, Wei ; Qiao, Xiaoqiang ; Wei, Jun ; Huang, Tao
Author_Institution :
Inst. of Software, Beijing, China
fYear :
2012
fDate :
24-29 June 2012
Firstpage :
17
Lastpage :
24
Abstract :
As a rising application paradigm, cloud computing enables the resources to be virtualized and shared among applications. In a typical cloud computing scenario, customers, Service Providers (SP), and Platform Providers (PP) are independent participants, and they have their own objectives with different revenues and costs. From PPs´ viewpoints, much research work reduced the costs by optimizing VM placement and deciding when and how to perform the VM migrations. However, some work ignored the fact that the balanced use of the multi-dimensional resources can affect overall resource utilization significantly. Furthermore, some work focuses on the selection of the VMs and the target servers without considering how to perform the reconfigurations. In this paper, with a comprehensive consideration of PPs´ interests, we propose a framework to improve their profits by maximizing the resource utilization and reducing the reconfiguration costs. Firstly, we use the vector arithmetic to model the objective of balancing the multi-dimensional resources use and propose a VM deployment optimization method to maximize the resource utilization. Then a two-level runtime reconfiguration strategy, including local adjustment and VM parallel migration, is presented to reduce the VM migration and shorten the total migration time. Finally, we conduct some preliminary experiments, and the results show that our framework is effective in maximizing the resource utilization and reducing the costs of the runtime reconfiguration.
Keywords :
cloud computing; cost reduction; resource allocation; virtual machines; VM parallel migration; VM placement optimization; cloud computing; cloud platform providers; local adjustment; multidimensional resource balancing; platform providers; profit-aware virtual machine deployment optimization framework; reconfiguration cost reduction; resource utilization maximization; service providers; two-level runtime reconfiguration strategy; Cloud computing; Optimization; Random access memory; Resource management; Runtime; Servers; Vectors; cloud computing; deployment optimization; migration; runtime reconfiguration; virtual machine;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on
Conference_Location :
Honolulu, HI
ISSN :
2159-6182
Print_ISBN :
978-1-4673-2892-0
Type :
conf
DOI :
10.1109/CLOUD.2012.60
Filename :
6253484
Link To Document :
بازگشت