DocumentCode :
2786725
Title :
Particle learning methods for state and parameter estimation
Author :
Nemeth, C. ; Fearnhead, P. ; Mihaylova, L. ; Vorley, D.
Author_Institution :
Dept. of Math. & Stat., Lancaster Univ., Lancaster, UK
fYear :
2012
fDate :
16-17 May 2012
Firstpage :
1
Lastpage :
6
Abstract :
This paper presents an approach for online parameter estimation within particle filters. Current research has mainly been focused towards the estimation of static parameters. However, in scenarios of target maneuver-ability, it is often necessary to update the parameters of the model to meet the changing conditions of the target. The novel aspect of the proposed approach lies in the estimation of non-static parameters which change at some unknown point in time. Our parameter estimation is updated using change point analysis, where a change point is identified when a significant change occurs in the observations of the system, such as changes in direction or velocity.
Keywords :
nonlinear filters; parameter estimation; particle filtering (numerical methods); changepoint analysis; nonstatic parameter estimation; online parameter estimation; particle filters; particle learning methods; state estimation; target maneuver- ability; Monte Carlo methods; changepoint detection; nonlinear filtering; parameter estimation;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Data Fusion & Target Tracking Conference (DF&TT 2012): Algorithms & Applications, 9th IET
Conference_Location :
London
Electronic_ISBN :
978-1-84919-624-6
Type :
conf
DOI :
10.1049/cp.2012.0412
Filename :
6253625
Link To Document :
بازگشت