DocumentCode :
2788512
Title :
Multi-class SVM optimization using MCE training with application to topic identification
Author :
Hazen, Timothy J.
Author_Institution :
MIT Lincoln Lab., Lexington, MA, USA
fYear :
2010
fDate :
14-19 March 2010
Firstpage :
5350
Lastpage :
5353
Abstract :
This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.
Keywords :
pattern classification; support vector machines; ASR lattice output; Fisher corpus; MCE training; human-human telephone conversations; minimum classification error; multiclass SVM optimization; support vector machine; topic identification; Automatic speech recognition; Calibration; Kernel; Laboratories; Lattices; Natural languages; Support vector machine classification; Support vector machines; Telephony; Virtual manufacturing; MCE training; SVM classifiers; topic identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on
Conference_Location :
Dallas, TX
ISSN :
1520-6149
Print_ISBN :
978-1-4244-4295-9
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2010.5494948
Filename :
5494948
Link To Document :
بازگشت