DocumentCode :
2789341
Title :
Fast total variation image restoration with parameter estimation using bayesian inference
Author :
Amizic, Bruno ; Babacan, S. Derin ; Michael, K.N. ; Molina, Rafael ; Katsaggelos, Aggelos K.
fYear :
2010
fDate :
14-19 March 2010
Firstpage :
770
Lastpage :
773
Abstract :
In this paper we propose two fast Total Variation (TV) based algorithms for image restoration by utilizing variational posterior distribution approximation. The unknown image and the hyperparameters for the image and observation models are formulated and estimated simultaneously within a hierachical Bayesian framework, rendering the algorithms fully-automated without any free parameters. Experimental results demonstrate that the proposed algorithms provide restoration results competitive to existing methods in terms of image quality while achieving superior computational efficiency.
Keywords :
Bayes methods; image restoration; parameter estimation; Bayesian inference; fast total variation image restoration; hierachical Bayesian framework; observation models; parameter estimation; unknown image; variational posterior distribution approximation; Approximation algorithms; Bayesian methods; Computational efficiency; Image quality; Image restoration; Mathematics; Parameter estimation; Probability distribution; Rendering (computer graphics); TV; Bayesian methods; image restoration; parameter estimation; total variation; variational methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on
Conference_Location :
Dallas, TX
ISSN :
1520-6149
Print_ISBN :
978-1-4244-4295-9
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2010.5494994
Filename :
5494994
Link To Document :
بازگشت